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Challenges for a mathematical foundation of deep
learning

• parameter selection

• theoretical guarantees

• understanding how signal is
processed

Answers to these questions relate to statistical problems.
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neural networks

f (x) = WLσWL−1 . . . σW1σW0x

• σ(x) = max(x , 0) is the ReLU activation function

• L is the network depth or number of hidden layers

• L = 1 shallow, L > 1 deep

• matrices Wi are the free parameters
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depth

Source: Kaiming He, Deep Residual Networks

• Networks are deep
• version of ResNet with 152 hidden layers
• networks become deeper
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why deep?

• for L > 1, we can localize

• Kolmogorov-Arnold representation theorem (Braun ’09): Fix
d ≥ 2. There are real numbers a, bp, cq and a continuous and
monotone function ψ : R→ R, such that for any continuous
function f : [0, 1]d → R, there exists a continuous function
g : R→ R with

f (x1, . . . , xd) =
2d∑
q=0

g
( d∑

p=1

bpψ(xp + qa) + cq
)
.
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high-dimensionality

Source: arxiv.org/pdf/1605.07678.pdf

• Number of network parameters is larger than sample size

• AlexNet uses 60 million parameters for 1.2 million training
samples
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classification and regression
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Mathematical problem: Given n data points, how well
can a given machine learning method approximate the

unknown function f ?

Our setup:

• study regression only

• data are n independent copies (Xi ,Yi ) ∈ Rd × R, i = 1, . . . , n

Yi = f (Xi ) + noise

• assume that networks are sparsely connected

• sparsity s is chosen
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loss and learning

• ideally we want to find a network function f minimizing

n∑
i=1

(
Yi − f (Xi )

)2
• this is the cross-entropy loss in regression

• finding a global minimum is computationally infeasible

• therefore (stochastic) gradient descent is employed

• for a given method f̂n returning a s-sparse network, we define
the quantity

∆n := E
[1

n

n∑
i=1

(Yi − f̂n(Xi ))2 − inf
f ∈F(s)

1

n

n∑
i=1

(Yi − f (Xi ))2
]

with F(s) the class of all s-sparse network functions
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hierarchical structure

• curse of dimensionality: no method exists that can reconstruct
regression function in high dimensions well

• deep learning outperforms other methods only for complex
problems

• want to identify setups, where deep learning is better

• only few objects are combined on deeper abstraction level
• few letters in one word
• few words in one sentence

• generalizes many structural constraints
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design supported on unknown manifold

• as before,
Yi = f (Xi ) + noise

but now we also suppose that Xi ∈ Rd lies on unknown
d∗-dimensional manifold

• if ψj denote the local coordinate maps, for any x on the
manifold,

K∑
j=1

τj(x)︸︷︷︸
partition of unity

·
(
f ◦ ψ−1j

)︸ ︷︷ ︸
function on Rd∗

◦ψj(x) = f (x)
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rate of convergence
Let (φn)n be a sequence determined by properties of the function
class.

Theorem: If

(i) depth � log n

(ii) width ≥ network sparsity � nφn log n

Then, for any network reconstruction method f̂n,

squared prediction error of f̂n � φn + ∆n

(up to log n-factors).

• potential number of parameters is large

• right level of sparsity is crucial

• reproduces recent approximation theoretic result as a corollary

• it can be proved that that wavelet methods perform much
worse for the same data
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on the proof

• neural networks are often referred to as black boxes

• no explicit formulae are available on how parameters depend
on data

• for that reason theory seems to be hopeless

building on existing tools in mathematical statistics, we can
determine the quality of the output without really understanding

what happens in the interior
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on the depth

• log(n) scaling of the depth occurs naturally

• possibility to restrict to small parameters

• doubling property by adding layers

• learning a function representation

• learning composition structure in function
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sparsely connected networks

Network sparsity is crucial in the proof but classical deep learning
produces dense networks. Recently many new methods have been

proposed generating sparsely connected networks.

• sparsifying as post-processing step  compression

• starting with sparse network topology

• evolutionary methods inspired by human brain
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double descent and implicit regularization

overparametrization generalizes well  implicit regularization
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overfitting

• training error = 0 implies that ∆n = 0

• ∆n does not fully characterize the statistical properties
anymore

• because of implicit regularization, SGD will pick interpolant
with good statistical properties

can implicit regularization avoid sparsity?

we conjecture the answer is no for the regression problem!
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does data interpolation contradict
statistical optimality?

Source: Belkin, Rakhlin, Tsybakov, 2018

in principle it is possible to interpolate and to denoise
simultaneously
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more details

we can show that for a simplified model and properly chosen
learning rate, SGD converges to natural cubic spline interpolant

 inconsistent estimator
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main idea

A shallow network (L = 1) can be written as

x 7→
m∑
j=1

aj(bjx − cj)+, aj , bj , cj ∈ R.

Taylor expansion in one dimension

g(x) = g(0) + xg ′(0) +

∫
g ′′(u)(x − u)+du

If, say g(0) = g ′(0) = 0, we have that approximately

g(x) ≈ 1

m

m∑
j=1

g ′′
( j

m

)(
x − j

m

)
+
.
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denoising vs. interpolation

• implicit regularization is not sufficient to do denoising

• it still works in practice because standard datasets have a lot
of structure in common (classification with few misclassified
data points)

All statements that start with ”In deep learning . . . ” are wrong,
what matters is the structure of the data. To describe for which

data structures such claims are true is a major challenge for
research in statistics.

21 / 23



outlook: binary classification with one
class

0.0 0.2 0.4 0.6 0.8 1.0

• in practice we often face unbalanced datasets
• most extreme case is if we only sample from one class
• data are supposed to be correctly labeled
• by making assumptions on the design, it is still possible to

come up with consistent classifiers
• problem is completely different than denoising, does deep

learning work?
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further challenges

• explainability

• energy landscape

• convolutional neural networks, autoencoders, . . .
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