Sequential Generative Adversarial Networks via

Causal Optimal Transport

Beatrice Acciaio

B. Acciaio Causal Wasserstein GANs

Outline

1. A gentle walk through Generative Adversarial models
2. Our suggestion: Causal Wasserstein GAN
3. Applications

4. Conclusions

B. Acciaio Causal Wasserstein GANs 2 /29

Outline

1. A gentle walk through Generative Adversarial models
2. Our suggestion: Causal Wasserstein GAN
3. Applications

4. Conclusions

B. Acciaio Causal Wasserstein GANs 3/29

Generative Adversarial models

Generative: train a Generator G to learn data distribution from an i.i.d.
sample of observations (training data)

Adversarial: we set a Discriminator D against the generator, to stimulate
G to do a better job

@ In a loop, we train: G to generate real-looking samples, and
D to recognize whether an element comes
from real data or is fake (generated by G).
@ G and D compete with each other, and the competition drives both
of them to improve their performance, until the generated samples are
indistinguishable from the genuine data samples (zero-sum game).

O real

pN
[o] - o/0
/
latent — — O fake

B. Acciaio Causal Wasserstein GANs 4/29

Generative Adversarial Networks (Goodfellows et al. 2014)

e training data {x'}", on X, empirical distribution ;1 = % SN S
@ latent space Z, dim(Z) << dim(&X), noise distribution (€ P(Z)
e g: Z — X generates samples, v = gu(€ P(X) (cf. p)

e f: X — [0, 1] outputs high value if believes input likely to be real

Problem formulation:

inf sup { BX[In £ (x)] + E=~[In(1 — £(g(2)))] }
g

objective function

D: learn f s.t. f(real) ~ 1, f(fake) ~0

G: learn decoding map g to maximally confuse D

f and g parametrized through Neural Networks — f;, g

B. Acciaio Causal Wasserstein GANs 5/29

Generative Adversarial Networks (Goodfellows et al. 2014)
P: inf sup {EX~#[In £,(x)] + B~ [In(1 — £5(y))]}
o ¢

f4: parametric family of functions (D’s job) — NN
vy = gy 4C : parametric family of densities (G's job) — NN

— Why not Maximum Likelihood Estimation?
e Density fitting: dvg(x) = po(x)dx
o MLE: supy & >N Inpy(x’) +— infg KL(p|vp) (Kullback-Leibler)
@ But vy has no density in X', supports of 1y and i may be
non-overlapping (MLE not well defined)

— If {3}, {gn}s enough capacity, and D trained till optimality:
P+ ir;f JSD(ulvg) «— igf {KL(p|m) + KL(vp|m)}

(Jensen Shannon Divergence)

B. Acciaio Causal Wasserstein GANs 6 /29

Generative Adversarial Networks: moving on

Problems (with original GANs):
o Continuity w.r.t. parameters: 6 — 6" % JSD(u|vg) — JSD(u|vp)
o Convergence: not guaranteed

@ Stability: usually unstable

Some ways out:
o Gradient-based regularizations

o Different divergences D (u,vp): Integral Probability Metrics,
Maximum Mean Discrepancy, Wasserstein distance, energy distance

@ A combination of the above

Example: Wasserstein distance Wy (p,v9) = inf E™[||x — y||]

en(/.l,,llg)
= ir;f Wi (e, vg)
v 0

B. Acciaio Causal Wasserstein GANs 7 /29

Wasserstein GANs (Arjovsky et al., Gulrajani et al. 2017)

Dual formulation of the Wasserstein distance:
Wi(p,ve) = sup {EV[f] —E™[f]}
Lipy
— restrict Kantorovich potentials to have a parametric form f;

— enforce Lip constraint via gradient penalization (easier and regularized)

|nf sup {E“[@,)1 —E"[fs(y)] + Lip. penal|zat|on}

e Continuity: if 8 — gy cont. = 6 +— Wi(u,vp) cont.
@ Convergence: WGANs converge if D always trained till optimality

@ WGANSs outperform MLE and MLE-NN unless exact parametric form
of data is known

B. Acciaio Causal Wasserstein GANs 8 /29

WGANs — Sinkhorn Divergences (Genevay et al. 2017)

Primal problem: numerically more stable (in the dual: gradient requires
differentiating dual potential, difficult to compute and unstable)

(i) Consider Wasserstein distance in primal form
(ii) Introduce an entropic penalization to regularize:

Peep:vp) = cmf){E”[C(X’Y)] +eH(mlp @)y = mee(n,vo)
s Vo
We e, vg) = ETe=t0)[c(x, y)]
(iii) Learn cost function via parametrization: c,(x,y) = ||fs(x)—f(y)ll

= Igf sup ch;),e(luﬂ V9)
é

»» We will consider a dynamic framework: we want to train the
generator to generate discrete-time paths, given a training set of
paths in X = R9*T (or long R¥valued time series)

B. Acciaio Causal Wasserstein GANs 9 /29

Outline

1. A gentle walk through Generative Adversarial models
2. Our suggestion: Causal Wasserstein GAN
3. Applications

4. Conclusions

B. Acciaio Causal Wasserstein GANs 10 / 29

Causal Wasserstein distance

»» We want a good distance in a dynamic framework

Definition. 7 € P(RY*T x RI*T) is causal if
m(dye|dxy, -+, dxT) = w(dye|dxy, -+, dx;) Vi

(= E" [5" he(y<e)(Mega(x<er1) — Me(x<e))] =0 (%)
Y (h)e, (My)t = he, My € Co(R9*E), M is (]RdXT,pl#w)—mart.)

Causal Wasserstein distance:

W, v) = inf E"[c(x,y)].
7.l_€|-|causal(u7,/)

neausal(y v) = {r € P(RI*T x R¥*T) : 1 causal, with marginals 1, v}

B. Acciaio Causal Wasserstein GANs 11 /29

Entropic regularization (A.-Backhoff-Jia 2019)

Regularized Causal Wasserstein distance:

Pcausal(u’ vp) = inf {EW[C(X, y)] + eH(m|p® I/)}a

Fencausal(u7y)

where H(mr|lp @ v) = E™ [log (d,@u”

Thanks to (x),

T-1
Pf::aausal(ﬂa ,/9) inf sup < E™ c(X y) +Z ht At+1 M(X)
’ 7€N(w,v) h, Mmart t=1

+ GH(W)}

Ch,M

e f {E" H
,Sup et){ [enm(x,y)] + eH(m) |

PC;,’M,E(/M V@)

B. Acciaio Causal Wasserstein GANs 12 /29

Causal Wasserstein GAN

» Parametrize — hy,, My,, and set ¢ = (¢1,¢2), ¢4 = Chy, My,
» Eliminate entropic bias W%e(u,,u) # 0 — consider Sinkhorn loss:

ch,,e(/% V) = ch),e(,uda V) c¢ e(,Uf N) c¢, (I/, V)

Causal Wasserstein GAN:

inf sup Wc¢,e(ua VG)
o 9

@ ¢y learned by D through a Recurrent-NN
o vy = gp4(, where gy learned by G through a Recurrent-NN

» Here # Genevay et al: 1/ vs W, RNNs vs NNs

B. Acciaio Causal Wasserstein GANs 13 /29

The algorithm

To solve the min-max problem, we approximate WCM(,LL, vg):
(1) sampling mini-batches
(2) penalizing M non-martingale

(3) taking a pre-determined n. of iterations in the Sinkhorn algorithm

(1): Sample mini-batch {x/}7, from the dataset, and sample {zi}m
from the latent space and set v = go(z"). Empirical measures:

om 1 om_ 1
K= e W= by
= £

(2): Penalize My, non-martingale via Apy(X™), with A > 0 and

-1

A

po(&™) =

Mﬂ

1
m

m .
> AM 1)
i=1

t

Il
=

B. Acciaio Causal Wasserstein GANs 14 /29

The algorithm

3): C t inf E™ H(rm|x" @y,
(3): Compute _ inf . {E7lcs] + eH(rlx™ & 97}

by Sinkhorn algorithm (Cuturi 2013): fast and stable matrix scaling
algorithm (via Sinkhorn's fixed point iteration), converges to the
unique solution * = diag(u) exp~/¢ diag(v).

After L iterations: WgL)E(i'"%") smooth proxy that can be
differentiated in a fast and stable way

— (1)+(2)+(3) = the objective function is:

V= WL, 9F) = Apo(X)

Cop»€

— Stochastic Gradient Ascent/Descent to update parameters:
Gnt1 = ¢n + "aVgV"
Opi1 =0, — "aVoV"

B. Acciaio Causal Wasserstein GANs

15 / 29

Training architecture

(Basic) Recurrent Neural Network (for G)

1 ¥ C.. YT
output yy O O O O
)) T)

hidd - ..
Ialyerezt O D unfold 2 - Csz ~ - g
)) T T
input zz O O O O
Z] Zn zZT

st = 0(Az; + Bsi—1 + a) history embedding vector (network memory)

y+ = Cs;, o activation functions, applied component-wise

0 ={A,B,C,a} parameters: weight matrices and bias vectors

B. Acciaio Causal Wasserstein GANs 16 / 29

Training architecture

Recurrent Neural Networks: G and D

he(y<t) M (x<¢)

1 T
o) o)
1 1

Y = gt(th) Xt
)
o
n
Zt

Many alternatives: number of layers, mix with fully connected layers,
Long Short Term Memory, Gated Recurrent Unit,...

B. Acciaio Causal Wasserstein GANs 17 /29

B. Acciaio Causal Wasserstein GANs

Pseudo-code

Data: 0y, ¢o, {x'}",(real data), e (entr. coeff.), m (batch size), L (Sinkhorn

iterations), « (Iearnlng rate), n. (critic iterations), A (martingale coeff.)
Result: 6, ¢

0+ 00, (15 — ¢0

for k=1,2,... do

for /=1,2,...,n. do
Sample: {x}™, from real data, and {z'}7, from ¢
y' < go(2')
Y,V AutoDiff¢(VAV§j?e(ﬁ’", gy —)\p¢(>“<’"))
¢ < ¢ + aRMSProp(V, V)

end

Sample: {x'}™, from real data, and {z'}7™, from ¢

y' < go(2')

VoV < AutoDiffy (Wﬁd, (X", 9’9"))

6 < 6 — aRMSProp(Vy V)

end

18 / 29

Looking forward

— We have been testing some easy-to check features on simulated data,
e.g. reproducing periodic curves.

— Now we start testing on reference databases and real data:
e static: MNIST
e dynamic: music
— Next main step: develop a conditional modification of the

algorithm, so that we feed the beginning of a sequence and the
generator produces the rest:

e Mathematically: easy modification
e But may require different tuning

B. Acciaio Causal Wasserstein GANs 19 /29

Outline

1. A gentle walk through Generative Adversarial models
2. Our suggestion: Causal Wasserstein GAN
3. Applications

4. Conclusions

B. Acciaio Causal Wasserstein GANs 20 / 29

Applications

— Original motivation of CWGANSs: learn how to generate real-looking
evolutions, given an observed dataset. E.g.

o Natural language processing: text generation.
@ Text to speech conversion systems.

o Financial perspective: application to obtain model-independent
pricing of financial derivatives.

— Depending on the datasets are we interested in, and the features of the
evolution we want to capture, architecture and parameters will need to be
chosen /tuned.

— We will see now: use of it to study Cournot-Nash equilibria

B. Acciaio Causal Wasserstein GANs 21 /29

Cournot-Nash equilibrium (A.-Backhoff 2019)

Setting:
Discrete time t =1,..., T; game played at time t =1
N agents whose types x evolve in time: X path-space of types

i € P(X): agents' types distribution

agents select non-anticipative actions y in time:) path-space of
actions

@ agents face a cost F(x,y,v) that depends on their own type, action,
and on the mean-field interaction with the rest of the population

Problem:

find Nash equilibria (for large systems of players, approximate this
problem with asymptotic problem for a representative agent)

B. Acciaio Causal Wasserstein GANs 22 /29

Cournot-Nash equilibrium

Cost function F(x,y,v) : X x Y x P(Y) =R
Definition
7* € Neusal(y,) is called Cournot-Nash equilibrium if:

7 attains inf ET[F(x,y,v*)], and ppu7* =v*
ﬂ-€|‘|causa|(‘uq.)

The above is the correct asymptotic formulation of the N-agent problem,
in the following sense:

Theorem (A.-Backhoff 2019)
Under some regularity conditions,
@ CN equilibria provides e-Nash equilibria for N-player game

(2 when Nash equilibria converge, the limits are CN equilibria

B. Acciaio Causal Wasserstein GANs 23 /29

Cournot-Nash equilibrium: reformulation

Separable cost: F(x,y,v)=f(x,y) + V[v|(y)
———

mean-field interaction

Potential game: V first variation of £, £ : P(Y) — R convex,

E(vte(é—

£ = [, VIvld(€ —v)

lim,_o+

Theorem (A.-Backhoff 2019)
The following are equivalent:
(i) 7 is a Cournot-Nash equilibrium;

(i) (pagym*,m*) solves the variational problem:

VP f Wcausal , £
(vP) b {(WEel(n) + el

24 /29

Cournot-Nash equilibrium via CWGANSs

Causal Wasserstein GAN:
inf WSy, 0) — infsup We, (1, 894C)
14 0 (z)

— we parametrized the set of decoding maps: gy — vy = gy4(
— we parametrized the causality constraint: learn cost cy4

— we regularized via entropic penalization and corrected the bias

Variational problem (~ CN equilibria):

| . A
Ve.gfy){ww”sa (v) +ER]} — inf sup (W, (i, go411) + Elgo 1] }

Conceptual difference:

— we parametrize the transport maps gg that push forward the type u
into the action v. How restrictive is this?

B. Acciaio Causal Wasserstein GANs 25 /29

Cournot-Nash equilibrium via CWGANSs

— With the CWGAN approach: we are restricting attention to pure-
equilibria distributions: vy = gy p, with gg modelled by an RNN

@ Note that

(VP)= inf (E"[F]+ E(paym)),

and recall that Monge causal transports (pure adapted equilibria) are
dense in the set of Kantorovich transports (mixed non-anticipative
equilibria): Madapt (5,)" = Meausal(),) (Lacker 2018)

@ Basic RNNs are universal approximators of open dynamical systems
(Schafer-Zimmermann 2007):

st = @a(st-1, 2t)
¥t = ¢1(st)
as long as activation functions o; increasing, bounded and continuous

— We shall compare with numerics in A.-Backhoff-Jia 2019

B. Acciaio Causal Wasserstein GANs 26 / 29

Outline

1. A gentle walk through Generative Adversarial models
2. Our suggestion: Causal Wasserstein GAN
3. Applications

4. Conclusions

B. Acciaio Causal Wasserstein GANs 27 /29

Conclusions

Presented today
@ Suggestion of a new dynamic generative adversarial model, through
Causal Wasserstein distance and RNN architecture
@ Some initial testing

@ Possible application to study Cournot-Nash equilibria

To-do list
@ Test on real data, tune parameters accordingly, explore different
RNN structures (depths, activation functions...)
o Compare with ‘static’ WGANs treating paths as static objects

@ Extend to conditional CWGANSs, to predict the evolution of an
observed path

B. Acciaio Causal Wasserstein GANs 28 /29

Literature

Acciaio, Backhoff: Nash equilibria and OT in a dynamic setting, 2019

Acciaio, Backhoff, Jia: Numerical computation of COT, 2019

Arjovsky, Chintala, Bottou: Wasserstein GAN, 2017

Cuturi: Sinkhorn distances: Lightspeed computation of OT, 2013

Genevay, Peyré, Cuturi: Learning Generative Models with Sinkhorn
Divergences, 2017

Goodfellows et al.: Generative Adversarial Networks, 2014

Gulrajani et al.: Improved Training of Wasserstein GANs, 2017

Lacker: Dense sets of joint distributions appearing in filtration enlargements,
stochastic control, and causal optimal transport, 2018

Schafer, Zimmermann: RNNs are universal approximators, 2007

B. Acciaio Causal Wasserstein GANs 29 /29

Thank you for your attention!

B. Acciaio Causal Wasserstein GANs

