
Sequential Generative Adversarial Networks via

Causal Optimal Transport

Beatrice Acciaio

B. Acciaio Causal Wasserstein GANs 1 / 29

Outline

1. A gentle walk through Generative Adversarial models

2. Our suggestion: Causal Wasserstein GAN

3. Applications

4. Conclusions

B. Acciaio Causal Wasserstein GANs 2 / 29

Outline

1. A gentle walk through Generative Adversarial models

2. Our suggestion: Causal Wasserstein GAN

3. Applications

4. Conclusions

B. Acciaio Causal Wasserstein GANs 3 / 29

Generative Adversarial models

Generative: train a Generator G to learn data distribution from an i.i.d.
sample of observations (training data)

Adversarial: we set a Discriminator D against the generator, to stimulate
G to do a better job

In a loop, we train: G to generate real-looking samples, and
D to recognize whether an element comes

from real data or is fake (generated by G).

G and D compete with each other, and the competition drives both
of them to improve their performance, until the generated samples are
indistinguishable from the genuine data samples (zero-sum game).

� real
↘

D → �/♦
↗

latent → G → ♦ fake

B. Acciaio Causal Wasserstein GANs 4 / 29

Generative Adversarial Networks (Goodfellows et al. 2014)

training data {x i}Ni=1 on X , empirical distribution µ = 1
N

∑N
i=1 δx i

latent space Z, dim(Z) << dim(X), noise distribution ζ ∈ P(Z)

g : Z → X generates samples, ν = g#ζ ∈ P(X) (cf. µ)

f : X → [0, 1] outputs high value if believes input likely to be real

Problem formulation:

inf
g

sup
f

{
Ex∼µ[ln f (x)] + Ez∼ζ [ln(1− f (g(z)))]︸ ︷︷ ︸

objective function

}

D: learn f s.t. f (real) ∼ 1, f (fake) ∼ 0

G: learn decoding map g to maximally confuse D

f and g parametrized through Neural Networks → fφ, gθ

B. Acciaio Causal Wasserstein GANs 5 / 29

Generative Adversarial Networks (Goodfellows et al. 2014)

P: inf
θ

sup
φ

{
Ex∼µ[ln fφ(x)] + Ey∼νθ [ln(1− fφ(y))]

}
fφ: parametric family of functions (D’s job) → NN

νθ = gθ#ζ : parametric family of densities (G’s job) → NN

→ Why not Maximum Likelihood Estimation?

Density fitting: dνθ(x) = pθ(x)dx

MLE: supθ
1
N

∑N
i=1 ln pθ(x i) ←→ infθ KL(µ|νθ) (Kullback-Leibler)

But νθ has no density in X , supports of νθ and µ may be

non-overlapping (MLE not well defined)

→ If {fφ}φ, {gθ}θ enough capacity, and D trained till optimality:

P ←→ inf
θ

JSD(µ|νθ) ←→ inf
θ
{KL(µ|m) + KL(νθ|m)}

(Jensen Shannon Divergence)

B. Acciaio Causal Wasserstein GANs 6 / 29

Generative Adversarial Networks: moving on

Problems (with original GANs):

Continuity w.r.t. parameters: θ → θ′ 6⇒ JSD(µ|νθ)→ JSD(µ|ν ′θ)

Convergence: not guaranteed

Stability: usually unstable

Some ways out:

Gradient-based regularizations

Different divergences D(µ, νθ): Integral Probability Metrics,
Maximum Mean Discrepancy, Wasserstein distance, energy distance

A combination of the above

Example: Wasserstein distance W1(µ, νθ) = inf
π∈Π(µ,νθ)

Eπ[‖x − y‖]

=⇒ inf
θ︸︷︷︸
G

W1(µ, νθ)︸ ︷︷ ︸
D

B. Acciaio Causal Wasserstein GANs 7 / 29

Wasserstein GANs (Arjovsky et al., Gulrajani et al. 2017)

Dual formulation of the Wasserstein distance:

W1(µ, νθ) = sup
f Lip1

{Eµ[f]− Eνθ [f]}

→ restrict Kantorovich potentials to have a parametric form fφ

→ enforce Lip constraint via gradient penalization (easier and regularized)

inf
θ

sup
φ

¶
Eµ[fφ(x)]− Eνθ [fφ(y)] + Lip. penalization

©
Continuity: if θ 7→ gθ cont. ⇒ θ 7→ W1(µ, νθ) cont.

Convergence: WGANs converge if D always trained till optimality

WGANs outperform MLE and MLE-NN unless exact parametric form
of data is known

B. Acciaio Causal Wasserstein GANs 8 / 29

WGANs → Sinkhorn Divergences (Genevay et al. 2017)

Primal problem: numerically more stable (in the dual: gradient requires
differentiating dual potential, difficult to compute and unstable)

(i) Consider Wasserstein distance in primal form

(ii) Introduce an entropic penalization to regularize:

Pc,ε(µ, νθ) := inf
π∈Π(µ,νθ)

{Eπ[c(x , y)] + εH(π|µ⊗ νθ)} → πc,ε(µ, νθ)

Wc,ε(µ, νθ) := Eπc,ε(µ,νθ)[c(x , y)]

(iii) Learn cost function via parametrization: cφ(x , y) = ‖fφ(x)−fφ(y)‖

⇒ inf
θ

sup
φ
Wcφ,ε(µ, νθ)

II We will consider a dynamic framework: we want to train the
generator to generate discrete-time paths, given a training set of
paths in X = Rd×T (or long Rd -valued time series)

B. Acciaio Causal Wasserstein GANs 9 / 29

Outline

1. A gentle walk through Generative Adversarial models

2. Our suggestion: Causal Wasserstein GAN

3. Applications

4. Conclusions

B. Acciaio Causal Wasserstein GANs 10 / 29

Causal Wasserstein distance

II We want a good distance in a dynamic framework

Definition. π ∈ P(Rd×T × Rd×T) is causal if

π(dyt |dx1, · · · , dxT) = π(dyt |dx1, · · · , dxt) ∀tÄ
⇐⇒ Eπ

î∑T−1
t=1 ht(y≤t)(Mt+1(x≤t+1)−Mt(x≤t))

ó
= 0 (∗)

∀ (ht)t , (Mt)t : ht ,Mt ∈ Cb(Rd×t), M is (Rd×T, p1#π)-mart.
ä

Causal Wasserstein distance:

Wcausal
c (µ, ν) := inf

π∈Πcausal(µ,ν)
Eπ[c(x , y)].

Πcausal(µ, ν) = {π ∈ P(Rd×T × Rd×T) : π causal, with marginals µ, ν}

B. Acciaio Causal Wasserstein GANs 11 / 29

Entropic regularization (A.-Backhoff-Jia 2019)

Regularized Causal Wasserstein distance:

Pcausal
c,ε (µ, νθ) := inf

π∈Πcausal(µ,ν)

¶
Eπ[c(x , y)] + εH(π|µ⊗ ν)

©
,

where H(π|µ⊗ ν) = Eπ
î

log
Ä

dπ
dµ⊗ν

ä ó
.

Thanks to (∗),

Pcausal
c,ε (µ, νθ) = inf

π∈Π(µ,ν)
sup

h,Mmart

{
Eπ
[
c(x , y) +

T−1∑
t=1

ht(y)∆t+1M(x)︸ ︷︷ ︸
ch,M

]
+ εH(π)

}

“ = ” sup
h,Mmart

inf
π∈Π(µ,ν)

{
Eπ[ch,M(x , y)] + εH(π)

}
︸ ︷︷ ︸

Pch,M ,ε(µ, νθ)

B. Acciaio Causal Wasserstein GANs 12 / 29

Causal Wasserstein GAN

I Parametrize → hφ1 ,Mφ2 , and set φ = (φ1, φ2), cφ := chφ1
,Mφ2

I Eliminate entropic bias Wcφ,ε(µ, µ) 6= 0 → consider Sinkhorn loss:

Ŵcφ,ε(µ, ν) :=Wcφ,ε(µ, ν)− 1
2Wcφ,ε(µ, µ)− 1

2Wcφ,ε(ν, ν)

Causal Wasserstein GAN:

inf
θ

sup
φ
Ŵcφ,ε(µ, νθ)

cφ learned by D through a Recurrent-NN

νθ = gθ#ζ, where gθ learned by G through a Recurrent-NN

I Here 6= Genevay et al: Wcausal vs W, RNNs vs NNs

B. Acciaio Causal Wasserstein GANs 13 / 29

The algorithm

To solve the min-max problem, we approximate Wcφ,ε(µ, νθ):

(1) sampling mini-batches

(2) penalizing M non-martingale

(3) taking a pre-determined n. of iterations in the Sinkhorn algorithm

(1): Sample mini-batch {x i}mi=1 from the dataset, and sample {z i}mi=1

from the latent space and set y iθ = gθ(z i). Empirical measures:

x̂m =
1

m

m∑
i=1

δx i , ŷmθ =
1

m

m∑
i=1

δy i
θ
.

(2): Penalize Mφ2 non-martingale via λpφ(x̂m), with λ > 0 and

pφ(x̂m) :=
1

m

T−1∑
t=1

∣∣∣∣ m∑
i=1

∆Mφ2,t+1(x i)

∣∣∣∣.
B. Acciaio Causal Wasserstein GANs 14 / 29

The algorithm

(3): Compute inf
π∈Π(x̂m,ŷmθ)

{
Eπ[cφ] + εH(π|x̂m ⊗ ŷmθ)

}
by Sinkhorn algorithm (Cuturi 2013): fast and stable matrix scaling
algorithm (via Sinkhorn’s fixed point iteration), converges to the
unique solution π∗ = diag(u) exp−cφ/ε diag(v).

After L iterations: W(L)
cφ,ε(x̂m, ŷmθ), smooth proxy that can be

differentiated in a fast and stable way

→ (1)+(2)+(3) ⇒ the objective function is:

V := Ŵ(L)
cφ,ε

(x̂m, ŷmθ)− λpφ(x̂m)

→ Stochastic Gradient Ascent/Descent to update parameters:

φn+1 = φn + “α∇φV ”

θn+1 = θn − “α∇θV ”

B. Acciaio Causal Wasserstein GANs 15 / 29

Training architecture

(Basic) Recurrent Neural Network (for G)

y1 y2 · · · yT

output yt © © © · · · ©

↑ ↑ ↑ ↑

hidden © −−−−→
unfold

© → © → · · · → ©
layer st s1 s2 · · · sT

↑ ↑ ↑ ↑
input zt © © © · · · ©

z1 z2 · · · zT

st = σ(Azt + Bst−1 + a) history embedding vector (network memory)

yt = Cst , σ activation functions, applied component-wise

θ = {A,B,C , a} parameters: weight matrices and bias vectors

B. Acciaio Causal Wasserstein GANs 16 / 29

Training architecture

Recurrent Neural Networks: G and D

ht(y≤t) Mt(x≤t)

↑ ↑
© ©
↑ ↑

yt = gt(z≤t) xt

↑
©
↑
zt

Many alternatives: number of layers, mix with fully connected layers,
Long Short Term Memory, Gated Recurrent Unit,...

B. Acciaio Causal Wasserstein GANs 17 / 29

Pseudo-code

Data: θ0, φ0, {x i}Ni=1(real data), ε (entr. coeff.), m (batch size), L (Sinkhorn
iterations), α (learning rate), nc (critic iterations), λ (martingale coeff.)

Result: θ, φ
θ ← θ0, φ← φ0

for k = 1, 2, . . . do
for l = 1, 2, . . . , nc do

Sample: {x i}mi=1 from real data, and {z i}mi=1 from ζ

y i ← gθ(z i)

∇φV ← AutoDiffφ

(
Ŵ(L)

cφ,ε(x̂m, ŷmθ)− λpφ(x̂m)
)

φ← φ+ αRMSProp(∇φV)

end

Sample: {x i}mi=1 from real data, and {z i}mi=1 from ζ

y i ← gθ(z i)

∇θV ← AutoDiffθ

(
Ŵ(L)

cφ,ε(x̂m, ŷmθ)
)

θ ← θ − αRMSProp(∇θV)
end

B. Acciaio Causal Wasserstein GANs 18 / 29

Looking forward

→ We have been testing some easy-to check features on simulated data,
e.g. reproducing periodic curves.

→ Now we start testing on reference databases and real data:

• static: MNIST

• dynamic: music

→ Next main step: develop a conditional modification of the
algorithm, so that we feed the beginning of a sequence and the
generator produces the rest:

• Mathematically: easy modification

• But may require different tuning

B. Acciaio Causal Wasserstein GANs 19 / 29

Outline

1. A gentle walk through Generative Adversarial models

2. Our suggestion: Causal Wasserstein GAN

3. Applications

4. Conclusions

B. Acciaio Causal Wasserstein GANs 20 / 29

Applications

→ Original motivation of CWGANs: learn how to generate real-looking
evolutions, given an observed dataset. E.g.

Natural language processing: text generation.

Text to speech conversion systems.

Financial perspective: application to obtain model-independent
pricing of financial derivatives.

→ Depending on the datasets are we interested in, and the features of the
evolution we want to capture, architecture and parameters will need to be
chosen/tuned.

→ We will see now: use of it to study Cournot-Nash equilibria

B. Acciaio Causal Wasserstein GANs 21 / 29

Cournot-Nash equilibrium (A.-Backhoff 2019)

Setting:

Discrete time t = 1, ...,T ; game played at time t = 1

N agents whose types x evolve in time: X path-space of types

µ ∈ P(X): agents’ types distribution

agents select non-anticipative actions y in time: Y path-space of
actions

agents face a cost F (x , y , ν) that depends on their own type, action,
and on the mean-field interaction with the rest of the population

Problem:

find Nash equilibria (for large systems of players, approximate this
problem with asymptotic problem for a representative agent)

B. Acciaio Causal Wasserstein GANs 22 / 29

Cournot-Nash equilibrium

Cost function F (x , y , ν) : X × Y × P(Y)→ R

Definition

π∗ ∈ Πcausal(µ, .) is called Cournot-Nash equilibrium if:

π∗ attains inf
π∈Πcausal(µ,.)

Eπ[F (x , y , ν∗)], and p2#π
∗ = ν∗

The above is the correct asymptotic formulation of the N-agent problem,
in the following sense:

Theorem (A.-Backhoff 2019)

Under some regularity conditions,

1© CN equilibria provides ε-Nash equilibria for N-player game

2© when Nash equilibria converge, the limits are CN equilibria

B. Acciaio Causal Wasserstein GANs 23 / 29

Cournot-Nash equilibrium: reformulation

Separable cost: F (x , y , ν) = f (x , y) + V [ν](y)︸ ︷︷ ︸
mean-field interaction

Potential game: V first variation of E , E : P(Y)→ R convex,

limε→0+
E(ν+ε(ξ−ν))−E(ν)

ε =
∫
Y V [ν]d(ξ − ν)

Theorem (A.-Backhoff 2019)

The following are equivalent:

(i) π∗ is a Cournot-Nash equilibrium;

(ii) (p2#π
∗, π∗) solves the variational problem:

(VP) inf
ν∈P(Y)

¶
Wcausal

f (µ, ν) + E [ν]
©

B. Acciaio Causal Wasserstein GANs 24 / 29

Cournot-Nash equilibrium via CWGANs

Causal Wasserstein GAN:

inf
ν
Wcausal

c (µ, ν) ↪→ inf
θ

sup
φ
Ŵcφ,ε(µ, gθ#ζ)

→ we parametrized the set of decoding maps: gθ → νθ = gθ#ζ

→ we parametrized the causality constraint: learn cost cφ

→ we regularized via entropic penalization and corrected the bias

Variational problem (∼ CN equilibria):

inf
ν∈P(Y)

¶
Wcausal

f (µ, ν) + E [ν]
©

↪→ inf
θ

sup
φ

¶
Ŵfφ,ε(µ, gθ#µ) + E [gθ#µ]

©
Conceptual difference:

→ we parametrize the transport maps gθ that push forward the type µ
into the action ν. How restrictive is this?

B. Acciaio Causal Wasserstein GANs 25 / 29

Cournot-Nash equilibrium via CWGANs

→ With the CWGAN approach: we are restricting attention to pure-
equilibria distributions: νθ = gθ#µ, with gθ modelled by an RNN

Note that
(VP) = inf

Πcausal(µ,.)
{Eπ[f] + E(p2#π)},

and recall that Monge causal transports (pure adapted equilibria) are
dense in the set of Kantorovich transports (mixed non-anticipative

equilibria): Πadapt.(µ, .)
w

= Πcausal(µ, .) (Lacker 2018)

Basic RNNs are universal approximators of open dynamical systems
(Schäfer-Zimmermann 2007):{

st = ϕ2(st−1, zt)

yt = ϕ1(st)

as long as activation functions σi increasing, bounded and continuous

→ We shall compare with numerics in A.-Backhoff-Jia 2019

B. Acciaio Causal Wasserstein GANs 26 / 29

Outline

1. A gentle walk through Generative Adversarial models

2. Our suggestion: Causal Wasserstein GAN

3. Applications

4. Conclusions

B. Acciaio Causal Wasserstein GANs 27 / 29

Conclusions

Presented today

Suggestion of a new dynamic generative adversarial model, through
Causal Wasserstein distance and RNN architecture

Some initial testing

Possible application to study Cournot-Nash equilibria

To-do list

Test on real data, tune parameters accordingly, explore different
RNN structures (depths, activation functions...)

Compare with ‘static’ WGANs treating paths as static objects

Extend to conditional CWGANs, to predict the evolution of an
observed path

B. Acciaio Causal Wasserstein GANs 28 / 29

Literature

Acciaio, Backhoff: Nash equilibria and OT in a dynamic setting, 2019

Acciaio, Backhoff, Jia: Numerical computation of COT, 2019

Arjovsky, Chintala, Bottou: Wasserstein GAN, 2017

Cuturi: Sinkhorn distances: Lightspeed computation of OT, 2013

Genevay, Peyré, Cuturi: Learning Generative Models with Sinkhorn
Divergences, 2017

Goodfellows et al.: Generative Adversarial Networks, 2014

Gulrajani et al.: Improved Training of Wasserstein GANs, 2017

Lacker: Dense sets of joint distributions appearing in filtration enlargements,
stochastic control, and causal optimal transport, 2018

Schäfer, Zimmermann: RNNs are universal approximators, 2007

B. Acciaio Causal Wasserstein GANs 29 / 29

Thank you for your attention!

B. Acciaio Causal Wasserstein GANs 30 / 29

